skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alomran, Omran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The safe internal transportation of hazardous materials within healthcare facilities is critical to mitigating risks to patients, staff, and visitors. This paper presents a risk-averse path planning framework for autonomously handling hazardous materials in healthcare systems. We model the indoor environment with grid-based obstacle and risk maps, where risk arises from pedestrian flow density and proximity to critical zones. Our novel risk-averse path planning approach integrates risk directly into each transition cost, thereby enabling more robust and secure path selection. We further improve efficiency through (i) a bidirectional variant that cuts search time and (ii) a post-optimization step that minimizes unnecessary heading changes while respecting a risk budget. We evaluated our framework on multiple simulated grid maps and compared it with established methods, measuring path length, average risk, and computational time. The results demonstrate that the proposed framework consistently generates safe and efficient paths while minimizing computational overhead. 
    more » « less
    Free, publicly-accessible full text available August 17, 2026